Renewables: A Key Driver for Clean Energy Transition Solar PV Roof Top Workshop \& Training Muscat, Oman, 13-14 December 2017

In partnership with:
Kantor

An EU-funded Project

$+$
 Out topic as a riddle:

■What is:
■ Renewable \& abundant
■ Technologically mature
■ Closely situated to demand
$■$ Easily integrated to the built environment

■ Silent

- Almost maintenance

+ Agenda

- Background on energy cooperation and the HiQSTEP project
- The results of our EU practices review

■ Benchmarking the status in third countries
■ A city-level technical potential assessment

- CBA and scenario building
- Can this work out in GCC region?
- Questions and feedback

+ EU HiQSTEP Project Objective

The objective of the Project is to provide short-term expertise which can be mobilised at short notice in order to carry out different types of studies
The Project started on 13 January 2014. It runs for 4 years (January 2018).
\square The Budget is 5M EUR and it is funded by the EU (DG NEAR)

The EaP Countries Question(s)

- Does it malke sense for a country to go forward with rooftop PV?

Towards a stronger Eastern Partnership

- How much should we develop?
- How we may possibly dévelop a "programme"
- What are the costs?
- What are the benefits?

The answer: A Building PV regional study

EU practices

Technical Potential Assessment

HiQSTEP Building Solar Power Study

Component 1: Review of EU practices

■

Component l: Key Results

The pattern and trend of PV installation in EU

Source: SPE, Global Market Outlook 2016

Component 1: Key Results

Prosumer Models (in terms of production based support scheme characteristics)

	/						
		Production based: classical "FiT" - style. No self-consumption	Self-consumption with constraints	Self-consumption $+\mathrm{FiT}$	Net-billing	Net-metering	Self-consumption + Premium
1	Right to selfconsume	Not Allowed	Yes	Yes	Yes	Yes	Yes
2	Revenues from self-consumed PV	N/A	Savings on the electricity bill	Savings on the electricity bill	Netting of production revenues and consumption costs	Savings on the electricity bill	Savings on the electricity bill
	Additional revenues on selfconsumed PV	N/A	No	No	No	No	Premium
3	Charges to finance $T \& D$ cost	N/A	Yes	No	No	No	No
4	Revenues from excess electricity	N / A	Zero	< retail price	<= retail price	= retail price	> retail price
5	Maximum timeframe for compensation	N / A	Real-time	Real-time	Long period	Long period	Real time

Component l: Key Results

Business Models Taxonomy

Solar PV Ownership Models

Third Party Ownership (IPO)

Direct Ownership

PPI

Lease

PPA, Net metering, etc.

Component l: Key Results

Support Schemes \& their taxonomy

Component l: Key Results

Funding of support schemes

\(\left.$$
\begin{array}{|l|c|c|c|c|}\hline & \begin{array}{c}\text { No support } \\
\text { schemes in } \\
\text { place }\end{array} & \begin{array}{c}\text { General } \\
\text { taxation paid } \\
\text { by all } \\
\text { citizens }\end{array}
$$ \& \begin{array}{c}Through specific non-tax

levies like PSOs paid by

all customers via

electricity bills\end{array} \& Other\end{array}\right]\)| |
| :--- |
| Austria |
| Belgium |
| Czech Republic |
| Denmark |
| Estonia |
| Finland |
| France |
| Germany |
| Greece |
| Hungary |

HiQSTEP Building Solar Power Study

Component 2: Review of EaP Countries practices

$+$

Component 2: BaP counties status

quo
Contents of the Component 2 report:
An overview of building PV (common \& national specificities)

6 Specific Country Profiles

Review criteria provided by Cl

Conclusions and country recommendations

An overview of the criteria (1/2)

- Liberalised \& liquid ?

Electricity Market

- Vertically integrated?
- Targets (by year, by technology)
- Institutional setting
- RES support scheme
- Cost coverage \& distribution

An overview of the criteria (2/2)

- Simplified connection procedure

Connection \& Access

- Access (curtailment rules)
- Business model
- Programme/Project finance

HiQSTEP Building Solar Power Study

Component 3: Surface-based building-PV potential assessment

Component 3: Methodology in a nutshell - 1 Assessment of existing GIS data

Existing Cadastral data
Option-2

Aerial/Satellite imagery

GIS output
Expected accuracy reduction of Option-3 vs. Option-1: $\leq 10 \%$

Building classification

Component 3: Methodology in a nutshell - 2 Estimation of PV potential

Component 3: Market Segments

Segment A (Residential):

- Single-family houses
- Larger but more fragmented market

Segment B (Non-residential):

- Multi-family, commercial, industrial, public
- Smaller but more attainable market segment

Component 3: Potential

Target Cities: Chisinau, Balti, Cahul Seg. A: 0.16 GWp / Seg. B: 0.34 GWp

Cities: Tbilisi, Batumi, Kutaisi, Rustavi Segm. A: 0.8 GWp / Segment B: l GWp

Cities: Baku, Sumgayit, Ganja Seg. A: 2.8 GWp / Seg. B: 0.8 GWp

Cities:Yerevan, Vanazdor, Gyumri Seg. A: 1.8 GWp / Seg. B: 0.5 GWp

.

Component 3: Average Specific Annual Yield (kWh/kWp)

HiQSTEP Building Solar Power Study

Component 5: Programme planning based on Costs \& Benefits

Components 4 \& 5: CBAs and Programming

- Staged development scenarios (Market segment, MWp/y, level of support)
- End-user point of view
- CBA = social planner's view
- Cost of policy support
- Environmental/social benefits
- Grid benefits/costs
- Other potential issues:
- Relation with national RES targets
- Relation with CoM SEAPs
- Off-grid applications

- Source of financing (NIF/E5P, etc.)

From theoretical potential to scenario building

Components in progress: 4 and 5
Surface-based calculation of roof area and installed PV capacity (C3)

Only 20\% of Residential

- Multiple constraints (International experience)

$$
\begin{aligned}
& 30 \%(2018-24) \\
& 70 \%(2025-30)
\end{aligned}
$$

- S-curve effect

Low (5\%)
Mid (50\%)
High (100\%)

- Level of support as a driver

+ Example: Attractiveness of

 building PV in Ukraine Levelised Cost of Electricity (LCOE)

Costs and Benefits

Policy level cost and environmental benefits:

PV capacity potential, MW (Component 3)	2618.22			
	Medium Scenario		High Scenario	
Estimated total installed capacity over 2018-2022 (MW)	280.5		561.0	
Total electricity produced over lifetime (kWh) Policy implemented	5,613,013,949		11,223,176,081	
	FiT $€ / \mathrm{kWh}$		Capital Grant €/MW	FiT $£ / \mathrm{kWh}$
Total Capital Grant cost, over 2018-2022 (€/MW) Average annual Capital Grant cost ($€$ /year) Capital Grant cost per kWh produced ($€ / \mathrm{kWh}$)	$\begin{array}{r} € 176,901,750 \\ € 35,380,350 \\ € 0.03 \\ \hline \end{array}$		$\begin{array}{r} € 414,690,993 \\ € 82,938,199 \\ € 0.04 \\ \hline \end{array}$	
Total FiT Cost, over lifetime ($€ / \mathrm{kWh}$) Average annual FiT cost ($€$ /year) Cost of FiT per kWh produced		$\begin{array}{r} € 809,266,685 \\ € 32,370,667.41 \\ € 0.14 \\ \hline \end{array}$		$\begin{array}{r} € 1,932,172,314 \\ € 77,286,893 \\ € 0.17 \\ \hline \end{array}$
Benefits				
CO2 emissions saved (tCO2) Value of CO2 emission saved ($€ / \mathrm{tCO} 2$) Jobs creation (jobs-year/MW)	$\begin{gathered} 4,529,702 \\ € 30,258,411 \\ 7,139 \end{gathered}$		$\begin{gathered} 9,057,103 \\ € 60,501,449 \\ 14,279 \end{gathered}$	
Impact of FIT on consumers	Annual Average over lifetime		Annual Averageover lifetime	
Annual total electricity consumption - Armenia, kWh Total annual FiT cost - High Scenario		$126,215,932,991$ $€ 32,370,667$		$126,215,932,991$ $€ 77,286,893$
Cost per kWh consumed		$€ 0.000$		€ 0.001
Average retail electr. price (resid+non-resid) over the period $€ / \mathrm{kWh}$		$€ 0.087$		$€ 0.087$
Impact on average retail electr. price		€ 0.003		$€ 0.007$
Household consumption kWh/year		2080		2080
Impact on Household bill $€$ /year		€ 0.53		€ 1.27

Can this work in the GCC region Food for thought:

■ What would be the motives (including benefits expected) for introducing rooftop PV in the region particularly in the light of higher LCOE compared to other RES (and in particular solar technologies)?

■ What would be the most promising support schemes for the technology and how the extra cost may be covered/distributed?

■ Is there any assessment of the technical potential (in installed capacity or expected annual yield) at city level in the region?

■ Is there any anticipation for specific market segments which may comprise attractive application areas e.g. tertiary sector buildings?

Can this work in the GCC region Food for thought:

■ Is there any obligation for RES in buildings imposed by means of building energy performance regulations?

■ How can an investment programme on rooftop PV be envisaged? Based on sovereign funds, with private lending or by a combination of the above? Are there any applications in which project financing has been used?

■ Can PV prosumers interact with the electricity market?
■ Is there any assessment on the penetration limits for Variable Renewable Energy additions to the national/regional electricity system?

Closing remark: the future is now

- Google Project Sunroof

- The 3 D's of our electricity future

Image:Younicos
"By failing to prepare, you are preparing to fail" - Benjamin Franklin

Thank you

Contact:

Nikos Tourlis
Study Team Leader
nikos.tourlis@gmail.com
faceboolk.com/studeast

